On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method
نویسندگان
چکیده
We address the question of the rates of convergence of the p-version interior penalty discontinuous Galerkin method (p-IPDG) for second order elliptic problems with non-homogeneous Dirichlet boundary conditions. It is known that the p-IPDG method admits slightly suboptimal a-priori bounds with respect to the polynomial degree (in the Hilbertian Sobolev space setting). An example for which the suboptimal rate of convergence with respect to the polynomial degree is both proven theoretically and validated in practice through numerical experiments is presented. Moreover, the performance of pIPDG on the related problem of p-approximation of corner singularities is assessed both theoretically and numerically, witnessing an almost doubling of the convergence rate of the p-IPDG method.
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملOptimal Error Estimates for the hp–Version Interior Penalty Discontinuous Galerkin Finite Element Method
We consider the hp-version interior penalty discontinuous Galerkin finite element method (hp-DGFEM) for second-order linear reaction-diffusion equations. To the best of our knowledge, the sharpest known error bounds for the hp-DGFEM are due to Riviére, Wheeler and Girault [8] and due to Houston, Schwab and Süli [5] which are optimal with respect to the meshsize h but suboptimal with respect to ...
متن کاملSymmetric Interior Penalty Dg Methods for the Compressible Navier–stokes Equations I: Method Formulation
In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier–Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint sec...
متن کاملhp-Version Discontinuous Galerkin Finite Element Method for Semilinear Parabolic Problems
We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...
متن کاملHp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems
We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 42 شماره
صفحات -
تاریخ انتشار 2010